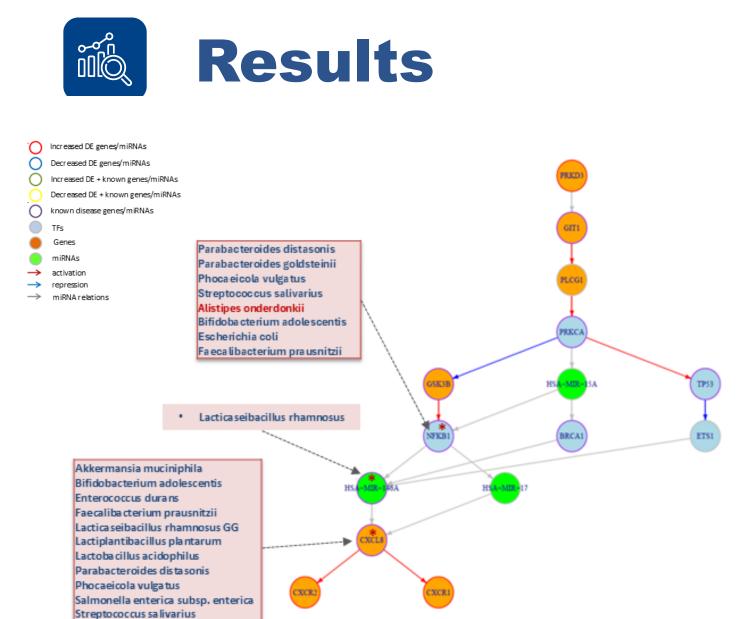
MICROBIOME meets miRNA: New Regulators of PD & HD

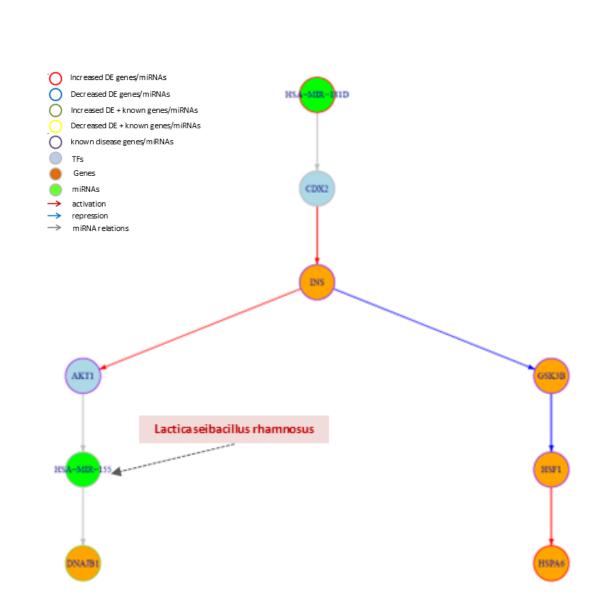
TWORK-BASED INVESTIGATION OF MIRNA AND MICROBIOME A SYSTEMS BIOLOGY APPROACH

P824

I.M. DURASI


1 Istanbul Health and Technology University, Istanbul, Türkiye

Background


Parkinson's disease (PD) and Huntington's disease (HD) are complex neurodegenerative disorders with high societal and clinical burden. Pathogenesis involves both genetic dysregulation (transcriptional and post-transcriptional) and environmental influences, including the gut microbiome. miRNAs act as key post-transcriptional regulators of neuronal homeostasis, synaptic plasticity, and immune responses.

Gut microbiota can modulate host gene expression through immune and metabolic pathways, shaping neuroinflammatory and neurodegenerative processes. Yet, integrative network-based approaches that combine miRNA, transcription factor, gene expression, and microbiome-host interactions are scarce. A systems biology framework is therefore needed to uncover hidden regulatory modules and novel therapeutic targets.

Result 1:

- NFKB1 hub is differentially modulated by microbiota: Faecalibacterium, Bifidobacterium, Parabacteroides inhibit → anti-inflammatory; *Alistipes* activates → pro-inflammatory.
- miR-146a, a negative regulator of NF-κB signaling, is inhibited by Lacticaseibacillus rhamnosus, linking microbial signals to loss of immune control in HD.
- CXCL8 (IL-8) pathway is broadly inhibited by beneficial taxa (Akkermansia, Lactobacillus, Faecalibacterium), but activated by Clostridium, suggesting microbial balance dictates neuroinflammatory tone.

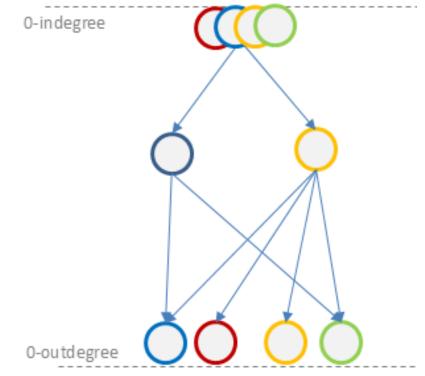
Result 2:

- miR-155, a pro-inflammatory miRNA regulating NF-κB and apoptosis, is activated by Lacticaseibacillus rhamnosus.
 - While not differentially expressed in PD data, its presence in the integrated network suggests a potential novel PD-related regulator.
- CDX2, a master regulator of intestinal epithelial genes, connects to INS → AKT1/GSK3B.
 - Although not validated in PD datasets, its appearance in the PD network highlights a possible gut-metabolicinflammatory link to PD.
- IBD patients show increased PD risk, while anti-TNF therapy reduces PD incidence, supporting the hypothesis that intestinal inflammation and NF-κB/miR-155 signaling contribute to PD.

Method

Step 1: Directed PPI Regulatory Network Construction SIGNOR (SIGnaling Network Open Resource) Interactions: 12447 | Nodes: 4731

Step 2: Extension of Directed PPI Network


Databases	Main Feature
TransmiR	the experimentally validated TF- microRNA interactions database
miRTarBase	the experimentally validated microRNA-target interactions database
miRecords	manually curated database of experimentally validated miRNA- target interactions
TarBase	manually curated collection of experimentally tested miRNA -

			euk	aryotic		
•						
	Main Featu	ıre				
nicroRNA pase)						ted
	providing a	comp	rehens	ive resou	rce of mil	at RNA
	transcr a trans databa	transcription factors a transcriptional red database Main Feature a database evidence for a manual providing a	transcription factors a transcriptional regula database Main Feature nicroRNA a database of contents evidence for hum a manually contents providing a comp	transcription factors a transcriptional regulatory el database Main Feature a database of curated evidence for human mice a manually curated providing a comprehens	transcription factors a transcriptional regulatory element database Main Feature a database of curated experime evidence for human microRNA (mase) a manually curated database providing a comprehensive resou	transcription factors a transcriptional regulatory element database Main Feature a database of curated experiment-suppore evidence for human microRNA (miRNA)

Step 3: Disease Related Regulatory Network Construction

Prefrontal Cortex Samples		49 neurologically		29 PD patients 33 neurologically normal control		Step 5: Discovering Important Regulatory Pathways				
	Huntin	gton Disease (HD)	Parkinson Disea	ase (PD)	0-indegree	$\overline{\mathbb{Q}}$				
ata		GSE64810	GSE6871	9			•	\rightarrow 3	Shortest p	
Data		GSE64977						$CR = \frac{ND}{NT}$	<i>ND:</i> #ot <i>NT:</i> len	
DE miRNAs	DE genes	Parkinson's Disease	DE miRNAs	DE genes		X/ / \				
26	165	increased expression	n 31	11			•			
16	17	decreased expression	n 33	1	0-outdegree	ŎŎ ŎŎ				
	ata Data DE miRNAs 26	Huntin DE miRNAs DE genes 26 165	Huntington Disease (HD) GSE64810 ata Data GSE64977 DE miRNAs DE genes 26 165 Parkinson's Disease increased expression	Huntington Disease (HD) Parkinson Disease GSE64810 GSE6871 That Data GSE64977 GSE7296 DE miRNAs DE genes Parkinson's Disease DE miRNAs increased expression 31	Huntington Disease (HD) Parkinson Disease (PD) GSE64810 GSE68719 ata Data GSE64977 GSE72962 DE miRNAs DE genes Parkinson's Disease DE miRNAs DE genes increased expression 31 11	Huntington Disease (HD) Parkinson Disease (PD) GS E64810 GS E68719 That GS E64977 GS E72962 DE miRNAs DE genes increased expression 31 11 16 17 decreased expression 33 1	The standard of the standard o	Tex Samples 49 neurologically normal control Huntington Disease (HD) Parkinson Disease (PD) GSE64810 GSE68719 ata Data GSE64977 GSE72962 DE miRNAs DE genes increased expression 31 11 decreased expression 33 1	### As amples 49 neurologically normal control ### Huntington Disease (HD) Parkinson Disease (PD) ### GSE64810 GSE68719 ### Data GSE64977 GSE72962 ### DE miRNAs DE genes increased expression 31 11 ### Details To decreased expression 33 1 11 ### As a provided in the provided Huntington Disease (PD) ### Disease (PD) ### O-indegree O-indegree	

Step 4: Subnetwork Construction 3rd degree neighbors of nodes → Subgraph: 4474/14605

Root and Leaf nodes are determined All directed acyclic pathways are identified →Shortest path algorithm CR-value (coverage rate) is calculated ND: #of disease related known nodes NT: length of the path

Louvain clustering to detect functional modules FDR-value < 0.2 → important regulatory pathways

Summary/ Highlights

Databases Main Feature

- In HD, the TP53—ETS1—miR-146a axis and CXCL8—CXCR1/2 signaling highlight neuroinflammation and demyelination as key processes. Microbiome taxa differentially modulating these nodes suggest that **gut-immune interactions** may represent a clinically relevant bridge to HD pathology.
- miR-155 and CDX2 may represent novel PD-related regulatory elements, linking microbiome signals (e.g., Lacticaseibacillus rhamnosus for miR-155, intestinal regulation for CDX2) to NF-κB/apoptosis and metabolic cascades.
- Patients with inflammatory bowel disease (IBD) show increased PD risk, while anti-TNF therapy reduces PD incidence by ~78%, supporting a mechanistic bridge between intestinal inflammation, NF-κB/miR-155 signaling, and PD.

References

- Perfetto L, et al. SIGNOR: a database of causal relationships between biological entities. Nucleic Acids Res. 2016;44(D1):D548-54.
- 2. Cheng L, et al. GutMGene: a comprehensive database for target genes of gut microbes and microbial metabolites. Nucleic Acids Res. 2022;50(D1):D795-800.
- Kaur U, et al. Reactive oxygen species, redox signaling and neurodegenerative diseases: a mechanistic insight. Front Cell Dev Biol. 2021;9:642274. 4. Peter I, et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol.
- 2018;75(8):939–46.

Contact information

İlknur Melis Durası, Ph.D. | Assistant Professor Istanbul Health and Technology University Dept. of Molecular Biology and Genetics

melis.durasi@istun.edu.tr | m.durasi@gmail.com www.mdnutriacademy.com

Prague, Czech Republic 13-16 September 2025 **Prague Congress Center**